
Improving the Four-Dimensional Incremental Analysis Update (4DIAU) with the HWRF
4DEnVar Data Assimilation System for Rapidly Evolving Hurricane Prediction

XU LU
a
AND XUGUANG WANG

a

a School of Meteorology, University of Oklahoma, Norman, Oklahoma

(Manuscript received 1 April 2021, in final form 20 August 2021)

ABSTRACT: Short-term spinup for strong storms is a known difficulty for the operational Hurricane Weather Research

and Forecasting (HWRF) Model after assimilating high-resolution inner-core observations. Our previous study associated

this short-term intensity prediction issue with the incompatibility between the HWRF Model and the data assimilation

(DA) analysis. While improving physics and resolution of the model was found to be helpful, this study focuses on further

improving the intensity predictions through the four-dimensional incremental analysis update (4DIAU). In the traditional

4DIAU, increments are predetermined by subtracting background forecasts from analyses. Such predetermined increments

implicitly require linear evolution assumption during the update, which are hardly valid for rapidly evolving hurricanes. To

confirm the hypothesis, a corresponding 4D analysis nudging (4DAN) method, which uses online increments is first com-

pared with the 4DIAU in an oscillation model. Then, variants of 4DIAU are proposed to improve its application for

nonlinear systems. Next, 4DIAU, 4DAN and their proposed improvements are implemented into the HWRF 4DEnVar

DA system and are investigated with Hurricane Patricia (2015). Results from both the oscillation model andHWRFModel

show that 1) the predetermined increments in 4DIAUcan be detrimental when there are discrepancies between the updated

and background forecasts during a nonlinear evolution; 2) 4DAN can improve the performance of incremental update upon

4DIAU, but its improvements are limited by the overfiltering; 3) relocating initial background before the incremental

update can improve the corresponding traditional methods; and 4) the feature-relative 4DIAU method improves the in-

cremental update the most and produces the best track and intensity predictions for Patricia among all experiments.
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1. Introduction

An increasing number of types of observations have been

made available to provide a better understanding of the dy-

namics and thermodynamics of the inner-core region of the

tropical cyclones (TC) (Lu and Wang 2020). To better utilize

these emerging observations in a numerical weather prediction

(NWP) system, an advanced data assimilation (DA) approach

is needed. In the past few decades, ensemble-based DA ap-

proaches such as the ensemble Kalman filter (EnKF) and the

ensemble–variational (EnVar) methods have been widely used

for TC predictions and have shown promising improvements in

both track and intensity predictions after assimilating the

inner-core observations (Torn and Hakim 2009; Xiao et al.

2009; Zhang et al. 2009, 2011; Li et al. 2012; Weng and Zhang

2012; Aksoy et al. 2013; Lu et al. 2017a,b; Lu and Wang 2019).

However, advanced inner-core DA is not always improv-

ing the hurricane predictions. For example, the operational

Hurricane Weather Research and Forecasting (HWRF)

Model has difficulties in spinning up the short-term surface

wind maximum (Vmax) after assimilating high-resolution

inner-core observations, which degrades its short-term in-

tensity predictions for strong storms (Tong et al. 2018).

While early studies attributed the issue to the inferior initial

analysis (Bernardet et al. 2015; Zhou et al. 2015; Pu et al.

2016), Lu and Wang (2019) found that such a short-term

Vmax degradation is likely a result of the incompatibility

between the HWRF Model and DA analysis. For example,

when the storm structure from an advanced inner-core DA

analysis better emulates the reality, the model with less re-

alistic physics cannot support and therefore requires longer

time to adjust to the analyzed TC. While improving the

model physics was found to alleviate the issue and improve

the intensity predictions according to Lu and Wang (2019),

the mismatch between model and DA analysis inevitably

exists. This current study aims at further improving the TC

intensity predictions by updating the model through using

the DA analysis incrementally.

Early studies suggested that intermittent DA updates can

introduce noises or imbalances into the NWP models (Morel

and Talagrand 1974; Hoke and Anthes 1976; Harms et al.

1992). These undesired features, which are usually identified as

shocks to the surface pressure tendency evolution (Lynch and

Huang 1992), may be developed into spurious gravity waves,

and can induce detrimental initialization or spinup problems

for the NWP models (Lee et al. 2006; Benkiran and Greiner

2008). Lots of methods have been proposed to mollify this

initialization concern since last century, such as nudging or

Newtonian relaxation (Hoke and Anthes 1976), the normal

mode initialization (Machenhauer 1977; Daley 1978), digital

filtering (Lynch and Huang 1992; Huang and Lynch 1993), and

the incremental analysis update (IAU) (Bloom et al. 1996).

IAU is one of the most widely used methods to address the

spinup concerns for the NWP models (Macpherson 2001; Zhu

et al. 2003; Lee et al. 2006; Zuo et al. 2019; Heng et al. 2020).

Instead of adding the DA analysis increment intermittently to

the model fields with dramatic changes at once, IAU uses theCorresponding author: Xuguang Wang, xuguang.wang@ou.edu
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increment as an additional but continuous forcing to the model

integration (Bloom et al. 1996). The continuous but relatively

small forcing added to each model integration time step is

designed to maximally maintain the dynamical balance of the

mass and momentum fields of the model, and therefore reduce

the shocks caused by the intermittent DA. Early IAU methods

include the three-dimensional (3D) approach (3DIAU), which

considered one single 3D analysis increment without accounting

for the incremental propagation within the DA time window

(Bloom et al. 1996). A four-dimensional IAU (4DIAU) was

later proposed to account for 4D analysis increment (Lorenc

et al. 2015) and was found to significantly reduce the model

spinup as compared to the corresponding digital filter method

(Buehner et al. 2015). The 4DIAU method has been im-

plemented by many operational centers, such as the Met Office

(Lorenc et al. 2015), the Environmental Canada global deter-

ministic prediction system (Buehner et al. 2015), and the

National Centers for Environmental Prediction (NCEP; Lei

and Whitaker 2016). But to the best knowledge of the au-

thors, the 4DIAU has not been examined in a regional con-

vection allowing model like HWRF where fast evolving

meso- and convective-scale weather system like hurricanes

are simulated.

In the traditional 4DIAU, increments are predetermined

by subtracting the background forecasts from the 4D ana-

lyses. Then these predetermined increments are incremen-

tally added to the model forecasts as external forcing to the

model. An implicit assumption of this approach is that the

systems are linear or near-linear so that the updated model

status would remain unchanged or perform similarly to the

background forecasts. For the highly nonlinear and rapidly

changing weather systems like hurricanes, this assumption is

easily violated. The predetermined analysis increments can

be added to the wrong places or phases, which can cause

detrimental issues to the subsequent forecast. Therefore,

improvement of the 4DIAU method is needed before ap-

plying the 4DIAU to regional hurricane analysis and pre-

diction system. Two variants of the 4DIAU method are

proposed and investigated in this study.

Analysis nudging (AN) is another incremental approach that

gradually inserts the DA analysis into the model integration

through an additional model forcing term. Unlike IAU, AN

‘‘nudges’’ the model predictions toward the DA analyses using

differences between the model prediction and the DA analysis

determined online instead of using the predetermined analysis

increments. By doing so, AN would additionally filter the

background state while the IAU only filters the analysis incre-

ment (Bloom et al. 1996; Bao and Errico 1997). This extra fil-

tering on the background state is undesirable as it was found to

remove features like the diurnal or tidal signals. But in the

meantime, concerns from the predetermined increments in

4DIAU are also no longer valid for 4DAN. Thus, in this study,

4DAN is also investigated and comparedwith the 4DIAUand its

variants to confirm our hypotheses about the issues of 4DIAU.

Patricia (2015) was a record-breaking category-5 hurricane

whose rapid intensification (RI) and peak intensity was not

captured by most operational centers at the time (Rogers et al.

2017; Qin and Zhang 2018). To be more specific, in this 5-day

hurricane with a small size, Patricia started its extraordinaryRI

from 0600UTC 21October to 0600 UTC 23October. Its Vmax

change was from about 18 to 95m s21 within 48h, while the

traditional definition of anRI is just 18m s21 within 24h (Kaplan

et al. 2010). Meanwhile, the hurricane was sampled by multiple

field campaigns simultaneously, such as the Intensity Forecasting

Experiment (IFEX) project (Rogers et al. 2006, 2013), and the

Tropical Cyclone Intensity (TCI) project (Doyle et al. 2017).

Those field campaign observations together with the ‘‘en-

hanced’’ atmospheric motion vector (AMV) observations from

the Cooperative Institute for Meteorological Satellite Studies

(CIMSS) (Wu et al. 2015; Velden et al. 2017) provided rarely

abundant 3D observations to sample the inner-core, the upper-

level outflow, the low-level inflow and the environment flow (Lu

and Wang 2020). The extremely detailed sampling and the

rapidly changing evolution of Patricia makes it a very good case

to investigate the impact of various incremental updatemethods

on the TC intensity predictions in a highly nonlinear situation.

More details about the data and their impacts on DA analysis

can be found in (Lu and Wang 2020).

The ultimate goal of this study is to improve the 4DIAU

methods for the short-term intensity prediction of hurricanes.

To achieve the goal, several scientific questions are being

addressed in this study: (i) What are the issues or limitations of

applying 4DIAU in the rapidly evolving hurricane predictions?

(ii) How does 4DIAU compare with 4DAN in rapidly evolving

hurricane cases? (iii) What are the benefits and limitation of

the proposed 4DIAU variants in real case applications?

In this manuscript, we first use an idealized framework to

illustrate the methodology of 4DIAU, its issue, and the pro-

posed improvements in section 2. The methodology of 4DAN

is also elucidated and compared with 4DIAU in the same

framework in section 2. The HWRF Model, the observations

and experiment designs for Hurricane Patricia are described in

section 3. Section 4 shows the results of the impacts of the

various incremental update methods on Patricia predictions.

Section 5 concludes and further discusses the paper.

2. Improving 4DIAU in an idealized oscillation model

a. Methodology and idealized results of traditional 4DIAU

This subsection describes the general methodology of

4DIAU. Following (Lei and Whitaker 2016), to facilitate the

understanding, a simple oscillation model is adopted in this

section. For consistency, some equations and description

mirror those from Lei and Whitaker (2016) with adaptions.

The truth state at time t is given by

f T(x, t)5A cos(k
T
x2v

T
t) , (1)

where A, kT, and vT are constants of the truth for amplitude,

wavenumber, and angular frequency, respectively. The model

state is given by

fM(x, t)5B cos(k
M
x2v

M
t1 t

PE
) , (2)

where B, kM, vM, and tPE are constants of the model for am-

plitude, wavenumber, angular frequency, and phase error,
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respectively. Assuming we can produce a perfect analysis state

f a(x, t) 5 fT(x, t), and the analysis increment at time t is

Df (x, t)5 f T(x, t)2fM(x, t). (3)

Considering the increments from the nearest analysis times t0
and t1, the individual 4DIAU forcing added to the model inte-

gration as an external forcing term at time t (where t0, t, t1) is

set to

Df (x, t)
4DIAU

5
w

1
Df (x, t

0
)1w

2
Df (x, t

1
)

(N2 1)(t
1
2 t

0
)

, (4)

where w1 5 (t1 2 t)/(t1 2 t0), w2 5 (t2 t0)/(t1 2 t0), and N is the

total number of increments during the time window.

Using the trapezoidal rule approximation following Lei

and Whitaker (2016), the corresponding total integral of

the 4DIAU forcing at the end of an assimilation window

[tc 2 (t/2), tc 1 (t/2)] is therefore

ðtc1(t/2)

tc2(t/2)
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4DIAU
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1Df

�
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c
2

t

2
1

j

N2 1
t

�

2(N2 1)
, (5)

where t is the DA time window length, and tc is the center of

the time window.

To help better visualize the effect of 4DIAU, a single wave

evolution for the background model forecast and the truth is

first plotted as blue and black solid lines in Figs. 1a–1e, re-

spectively. The wave configurations follow Eqs. (1) and (2),

and the parameters are set to A5 3; B5 2; kT 5 1; kM 5 0.7;

vT 5 1; vM 5 1; and tpe 5 2p/2 to mimic the real case situ-

ation in section 4. Specifically, the amplitude, wavelength,

phase and speed differences in this idealized case roughly

correspond to the intensity, size, location and motion dif-

ferences of the storms produced by the HWRF background

forecast and the 4DEnVar analysis, respectively. For sim-

plification, the evolution is from phase2p/2 to phase p/2 and

only five increments are considered every p/4, and the ide-

alized 4DIAU-enabled prediction (4DIAU-Ideal) is shown

in dashed purple lines in Figs. 1a–1e using Eqs. (3)–(5). In

this idealized case, the 4DIAU-Ideal forecast moves at the

same speed as the background model during the updates,

which is yM 5 vM/kM ; 1.42. As shown in Fig. 1p, the final

4DIAU-Ideal analysis differs from the truth. But in general,

the final wave pattern of the 4DIAU-Ideal is reasonably

more consistent with the truth as compared to the back-

ground despite slight phase error, a little amplitude loss and

small errors in the tails.

b. Implicit linear assumption issue of traditional 4DIAU

Although the performance of 4DIAU-Ideal is reasonable as

shown in section 2a, its evolution requires that the updated

forecasts remain the same moving speed as the background

forecast. Such an implicit assumption may be reasonable for a

linear or near-linear system, but is not valid for a rapidly

changing nonlinear system. During the incremental update of a

nonlinear system, the modified wave will naturally move slower

from yM5 1.42 toward yT5 vT/kT5 1 as it becomes more alike

the truth. To simplify the situation, we assume a constantmoving

speed of yc ; 1.23 (yT , yc , yM) for the updated forecasts to

represent the speed discrepancy during the process, and the

corresponding 4DIAU evolution is shown in Figs. 1f–1j. Clearly,

when the phase of the updated forecast f 4DIAU(x, t) drifts away

from the background forecast f M(x, t), the predetermined in-

crements calculated from Eq. (3) will be added to wrong places

and result in detrimental discontinuities or spikes to themodified

wave such as the sharp jumps around 1.2p and 4p (Figs. 1h–j).

In contrast to the 4DIAU, the 4DAN method does not pre-

determine the increments. Instead, the additional forcing term is

adaptively calculated using online differences between the current

model forecasts and the analyses. Thus, 4DAN suffers less from

the linear assumptions than 4DIAU. To be consistent with and as

an analogy to 4DIAU, the external 4DAN forcing term added to

themodel integration at time step t (where t0, t, t1) is defined as

Df (x, t)
4DAN

5
w

1
[f T(x, t

2
)2f 4DAN(x, t)]1w

2
[f T(x, t

1
)2f 4DAN(x, t)]

(N2 1)
, (6)

where the weighting coefficients w1 and w2 are defined the

same way as in Eq. (4), and f4DAN(x, t) is the current model

forecast at time t.

The evolution of 4DAN is shown in Figs. 1k–1o. The figures

show that the disruptive effects in both the main body and tail

regions of the wave in 4DAN are much less as compared to

those in 4DIAU (Fig. 1p). This result confirms the hypothesis

that the implicit linear requirement when using the pre-

determined increments is indeed one major error source for

nonlinear applications in 4DIAU. However, the amplitude

error from the final 4DAN forecast is also larger than that of

4DIAU. The issue is likely due to the larger filtering effect in

4DAN which not only filters the analysis increments, but also

filters the background.

c. Removing initial phase error before the

incremental update

In this simple oscillation model, primary differences between

the model background and the truth are from the phase, am-

plitude, andwavelength. Sensitivity experiments suggest that the

phase difference contributes significantly more than the other

two (the evolution of the wave after removing wavelength and
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amplitude error is similar to Figs. 1f–1j, not shown) to the spikes

in 4DIAU when the moving speed discrepancy exists.

Therefore, in experiment 4DIAU-RL, we propose to relo-

cate the background model forecast to the truth location be-

fore 4DIAU (Fig. 2a). Such a removal of initial phase error in

4DIAU-RL produces a significant improvement during the

incremental update according to Figs. 2a–2e. For example, the

main body of the wave in 4DIAU-RL was intact, and the final

phase error is also reduced compared to 4DIAU. Yet, Fig. 2p

indicates that 4DIAU-RL can still have large discontinuities in

the tails of the wave, which disagree with the truth.

Correspondingly, experiment 4DAN-RL is conducted by

removing initial phase error prior to 4DAN. Figures 2f–2j show

that the evolution of 4DAN-RL is also much more improved

FIG. 1. Evolution of a simple oscillation model for the truth (black), background model (blue), and (a)–(e) idealized 4DIAU (purple),

(f)–(j) 4DIAU (cyan), and (k)–(o) 4DAN (gold) from 2p/2 to p/2. (p) The final forecasts of each experiment are shown together for

comparison.
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upon 4DAN with its final forecast matches the truth better

(Fig. 2p). For example, the amplitude error is becoming much

smaller in 4DAN-RL. The improvement is likely due to the

smaller total differences between the model background and

the analysis. However, overfiltering effect still exists as the

amplitude of the final wave is still smaller than both 4DIAU-

RL and the truth.

Comparisons between 4DIAU and 4DIAU-RL, and 4DAN

and 4DAN-RL demonstrate that the initial phase error can

be a large error source for both incremental update methods

(Fig. 1p vs Fig. 2p). And the comparison between 4DAN-RL

and 4DIAU-RL also further confirms the hypothesis that using

the predetermined increments in nonlinear evolutions is a

major concern for the 4DIAU methods, especially when the

FIG. 2. As in Fig. 1, but for (a)–(e) 4DIAU-RL (brown), (f)–(j) 4DAN-RL (red), and (k)–(o) 4DIAU-FR (green). The final forecast of

4DIAU-FR (4DIAU-FRRL) will be relocated to the truth location and is shown as green dashes in (o).
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moving speed discrepancy between the updated and back-

ground forecasts exists (Fig. 2p).

d. Improving 4DIAU with feature-relative approach

As discussed in the previous sections, a major concern of the

4DIAUmethods is the moving speed discrepancy between the

updated and background forecasts, which is the primary con-

tribution to the degraded 4DIAU forecast. Thus, one feature-

relative 4DIAU (4DIAU-FR) approach is proposed in this

subsection to address the issue.

In this 4DIAU-FR method, predetermined increments are

calculated relative to the features (e.g., wave in this case, or

storm in the hurricane case) by collocating the 4DEnVar an-

alyzed wave (storm) with the background wave (storm; e.g.,

Truth-RL in Figs. 2k–o). Then, during the incremental update

step, the increments are added only relative to the wave

(storm). In other words, these feature-relative predetermined

increments are only correcting the structure of the wave

(storm) and are not correcting the phase (location) error. After

all the structural modifications are added, the phase (location)

error is accounted by relocating the final forecast to the ana-

lyzed position. This way, the 4DIAU-FR method is split into

two parts: part one modifies the wave (storm) structures in-

crementally, and part two corrects the phase (location) error.

Figures 2k–2o show that the 4DIAU-FR can produce a final

analysis that is very consistent with the truth, which has a

RMSE of almost zero using the simplified model. This result

again confirms the earlier results that if left untreated the speed

discrepancy between the updated and background forecasts

as a result of nonlinear evolution in the DA window can de-

grade the 4DIAU result. The proposed 4DIAU-FR approach

shows potential to improve 4DIAU in the nonlinear situations.

3. Model, data, and experiment design

a. Model and observation descriptions

The 4DIAUand 4DANcapabilities are implemented into the

newly developed dual-resolution, hybrid 4DEnVar DA system

for HWRF (Lu et al. 2017a,b) using Eqs. (1)–(6) in section 2.

Following Lu and Wang (2019), the horizontal grid spacing of

the model is approximately 0.67km (0.0058), 2 km (0.0158), and
6 km (0.0458) for the innermost (529 3 940 grid points), inter-

mediate (2653 472 grid points), and outermost (2683 568 grid

points) domains, respectively. The model has 61 vertical levels

with its top at 2 hPa. The Ferrier–Aligo microphysics scheme

(Tallapragada et al. 2015), simplified Arakawa–Schubert (SAS)

cumulus scheme (Grell 1993; Hong and Pan 1996; Han and Pan

2011), HWRF surface layer scheme (Tallapragada et al. 2015),

Noah land surface model (LSM) (Ek et al. 2003), the nonlocal

hybrid eddy-diffusivity mass-flux (hybrid EDMF) PBL scheme

(Hong and Pan 1996; Han et al. 2016), and RRTMG longwave

and shortwave radiation schemes (Iacono et al. 2008) are used to

parameterize the microphysics, cumulus, surface layer, land

surface, planetary boundary layer and radiation processes, re-

spectively. The vertical and horizontal diffusion in the PBL

scheme ismodified followingLu andWang (2019). Specifically, a

fix in the vertical turbulent diffusion profile is added to enable

the in-cloud mixing for the deep convection regions like the

eyewall or rainbands following (Zhu et al. 2019). And the hor-

izontal diffusion is reduced to be consistent with the model

resolution increase following (Zhang et al. 2018). These model

physics and resolution configurations are from Lu and Wang

(2019). As discussed in Lu and Wang (2019), the modified suite

of model physics and resolution is to produce a better intensity

prediction that best utilizes the advanced inner-core DA

TABLE 1. List of observations assimilated.

Conventional in situ observations in

prepbufr

Radiosondes

Dropwindsondes

Aircraft reports

Surface ship and buoy observations

Surface observations over land

Pibal winds

Wind profilers

Radar-derived velocity azimuth display wind

WindSat scatterometer winds

Integrated precipitable water derived from the global

positioning system

Airborne observations on board NOAA

WP-3D aircraft from HFIP

Tail Doppler radar radial velocity

Stepped Frequency Microwave Radiometer (SFMR)

Flight-level wind, temperature, and specific humidity

observations

High Definition Sounding System (HDSS) dropsodes from the TCI program

MSLP from TCVital

Enhanced atmospheric motion vectors from the CIMSS

Satellite radiances IR HIRS

AIRS

IASI

GOES

MW AMSU-A

MHS

ATMS
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analysis. Sensitivity experiments show that the conclusions

about IAU using the unmodified physics and resolution are

generally qualitatively consistent with the conclusions shown in

this study (not shown).

The observations assimilated in this study are listed in Table 1.

Briefly, these are the observations frommultiple field campaigns

together with the enhanced AMVs from CIMSS and the ob-

servations from the 2015 operational HWRF (Tallapragada

et al. 2015). More details and the impacts of these various ob-

servations can be found in Lu and Wang (2020).

b. Experiment design

To understand how the 4DIAU, 4DAN and their variants

discussed in section 2 work in real cases with a highly nonlinear

situation, six experiments are conducted in this study during the

RI period of Hurricane Patricia (2015). The experiments are de-

noted as 4DEV, 4DIAU, 4DIAU-RL, 4DAN, 4DAN-RL, and

4DIAU-FR. Details of each experiment are described as below.

Experiment 4DEV is the baseline experiment, where forecasts

initialized from the 4DEnVar analysis is used for reference. In

this experiment, the triple nested background at 18-/6-/2-km grid

spacing and the double nested ensemble forecasts at 18-/6-km

grid spacing were generated from a continuously cycled HWRF

DA system from Lu and Wang (2019). Both the ensemble and

control backgrounds were first relocated by assimilating the

TCVital positions using an EnSRF algorithm (Whitaker and

Hamill 2002) prior DA to reduce the nongaussianity due to large

location errors. Then 4DEnVar DA is performed to assimilate

the observations listed in Table 1 between 1500 and 2100 UTC

22 October 2015. During the dual-resolution 4DEnVar DA, the

background at 2 km is ingesting the 40-member ensemble error

covariance at 6-km grid spacing. And the background at 6 km is

ingesting the 6-km ensemble error covariance as well. More

details about the relocation, 4DEnVarmethodology and theDA

system can be found in Lu et al. (2017b). Next, the DA analyses

are downscaled to the 6-/2-/0.67-km grid spacing through inter-

polation. Finally, a 42-h forecast is initialized from the down-

scaled analysis valid at 1800 UTC 22 October 2015. This 42-h

forecast is denoted as 4DEV, and the downscaled analyses will

be used to calculate the predetermined increments for other

4DIAU experiments. In this current study, due to computational

cost constraint, subkilometer resolution is only used during the

free forecast but not during the DA. Further investigations on

how the model resolution change impacts before and after DA

are discussed in Feng and Wang (2021).

The traditional 4DIAU is performed in experiment 4DIAU

(a schematic is shown in Fig. 3). The predetermined increments

are calculated as follows. First, one 6-h background forecast

named as ‘‘NoDA’’ is generated at the 6-/2-/0.67-kmgrid spacing

to prepare the predetermined increments for 4DIAU. To do so,

the background forecast valid at 1500 UTC 22 October 2015 from

Lu andWang (2019) is downscaled from 18/6/2km. No relocation

is performed in this backgroundbefore or after downscaling. Then,

the 6-h forecast is initialized from this downscaled background up

to 2100 UTC 22 October. Second, the predetermined increments

are calculated between the downscaled 4DEnVar analyses and the

NoDA forecasts. For 4DIAU, the predetermined increments are

added to each model integration time step, which is every 12 s,

through the forcing term following Eq. (4).

Experiment 4DIAU-RL is similar to experiment 4DIAU

except that the downscaled background forecast valid at

1500UTC 22October is relocated to the interpolated best track1

before initialization. This relocated background is named as

NoDA-RL to distinguish from NoDA. Such a correction in the

initial location error of real storm is equivalent to the correction

of initial phase error in the idealized model. By design, the

NoDA-RL forecasts have much smaller location errors as

compared to those in NoDA, and so are the predetermined in-

crements as suggested in section 2b. Hence, the comparison

FIG. 3. Flowchart for experiment 4DIAU. Circles are the free forecast initialized from the previous DA cycle

valid at 1200 UTC. Black dots are the 4DEnVar analyses. Triangles are the predetermined increments from the

differences betweenNoDA (circle) and 4DEnVar analyses (black dots). The red dots are 4DIAU forecasts with the

updates from the predetermined increments (triangles).

1 The best track data are from the National Hurricane Center

and only available at the synoptic times. The data can be found

online at https://www.nhc.noaa.gov/data/hurdat/hurdat2-1851-

2019-052520.txt. The relocation is achieved through the HWRF

vortex relocation procedure.
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between experiments 4DIAU-RL and 4DIAU can help reveal

the contribution of the initial location error during the degraded

4DIAU analysis and forecast as discussed in section 2c for the

real cases.

Similar to 4DIAU and 4DIAU-RL, experiments 4DAN and

4DAN-RL are designed following section 2 and Eq. (6). No

predetermined increments are calculated with the 4DAN

configurations. Instead, 4DAN calculates online increments

between the analyses and the model forecast initialized from

NoDA at 1500 UTC 22 October 2015. To be more specific, a

weighted difference between themodel forecast and the 4DEnVar

analyses at each time step is added to the model as an external

forcing term following Eq. (6) to gradually nudge the model

forecast toward 4DEnVar analyses. The 4DAN-RL experiment

differs from 4DAN by initializing from NoDA-RL at the initial

time. Comparisons between 4DAN (4DAN-RL) and 4DIAU

(4DIAU-RL) aim to demonstrate the issue of the implicit linear

assumption in using the predetermined increments during the

4DIAU methods in a real hurricane case. And the comparisons

between 4DAN and 4DAN-RL shall help further identify the

impact of the initial location errors for the incremental updates.

Following section 2d, experiment 4DIAU-FR does not re-

locate the background forecast, instead, it relocates all the

downscaled 4DEnVar analyses to the positions of the storm in

NoDA and then calculates the storm-relative increments to

form forcing terms. This was achieved by leveraging the

moving nest capability of HWRF. At the end of a 6-h IAU time

window, the 4DIAU-FR forecast will be relocated back to the

observed storm location and then a 39-h free forecast is

initialized to the end of the storm. The comparison among

4DIAU, 4DIAU-RL, and 4DIAU-FR is to further reveal the

use of classic 4DIAU for a case associated with nonlinear

hurricane evolution and to demonstrate the value of the pro-

posed 4DIAU variants: 4DIAU-RL and 4DIAU-FR.

4. Results

a. 4DEnVar, 4DIAU, and 4DAN forecasts

The wind fields of the 4DEnVar DA analyses and the

corresponding NoDA forecasts at the surface are first shown

in Fig. 4 verified against the SFMR and the Hurricane

Imaging Radiometer (HIRAD; Cecil et al. 2017) observa-

tions. Figures 4h–4n show that the NoDA forecast is initially

larger in size than the observations. Assimilating high-

resolution inner-core observations as listed in section 3a using

4DEnVar produces a significantly reduced storm size and a more

asymmetric primary circulation. These features in the analyses are

more consistent with the observations than the background, ex-

cept that the wind maximum at 1800 UTC is positioned to the

southeast rather than northeast (Fig. 4d). This analysis at

1800 UTC 22 October 2015 will then be used as the initial con-

dition for the 4DEV forecast as designed in section 3b.

The intensity and track predictions of 4DEV is shown

in Fig. 5 in comparison with the best track. When initialized

from the analysis at 1800 UTC, both track and intensification

rate predictions of 4DEV during the intensification period of

Patricia do not match the observations. Specifically, an

FIG. 4. The hourly evolution of the 10-m wind field for (a)–(g) the 4DEnVar analyses, and (h)–(n) the NoDA forecasts between 1500

and 2100 UTC 22 Oct 2015. (o) The SFMR observations centered at 1739 UTC and HIRAD observations centered at (p) 1820 UTC and

(q) 1916UTC 22Oct 2015 are shown for reference. The black dot in each figure is the best track (interpolated for nonsynoptic times) at the

corresponding time.
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eastward bias is noticed in the track predictions from 4DEV

(Fig. 5c). In addition, the Vmax evolution in the best track

suggests that the storm was rapidly intensifying at an almost

constant rate (Fig. 5a). In comparison, 4DEV shows a much

slower Vmax intensification in the first 6 h and then intensifies

much faster afterward. The 4DEV experiment eventually

reaches a peak intensity that is about 5m s21 less than the best

track at 1200 UTC 23 October. For the minimum sea level

pressure (MSLP), 4DEV intensifies at a consistently faster rate

than the best track during the intensification period with a

weaker initial value (Fig. 5b). Such an inconsistent Vmax and

MSLP evolution indicates an imbalanced wind and pressure

field. As discussed earlier in section 1, the slow Vmax inten-

sification in the first 6 h of 4DEV is likely attributed to the

model shock in response to DA after a dramatically size change.

To support the hypothesis, an extra experiment ‘‘Back,’’ which is

initialized from the downscaled DA background valid at

1800 UTC is performed in consistency with 4DEV to reveal the

shock. The mean absolute sea level pressure (MASLP) tendency

evolution for the 4DEV and the corresponding Back forecast is

shown in Fig. 6. The comparison between Back and 4DEV in-

dicates that the intermittentDA can add about 20%more shocks

to the model in this case. To better understand the impact of

these shocks or instabilities to 4DEV, a time–radius Hovmöller

diagram of the eyewall evolution is given in Fig. 7a. While the

azimuthal mean tangential field indicates a gradually reducing

storm size in 4DEV, its azimuthal mean vertical velocity evolu-

tion is struggling to establish a well-defined eyewall. Multiple

updraft maxima continuously pop up even inside the eye region

of 4DEV, which suggests dramatic dynamical adjustments even

after hours of model integration.

The 4DIAU experiment is supposed to reduce such a shock

and improve the short-term intensity prediction by design. As

detailed in section 3b (Figs. 4h–n), the predetermined incre-

ments are calculated based on the NoDA forecasts and the

downscaled 4DEnVar analyses, and are added incrementally

to 4DIAU. Consistent with our expectation, Fig. 6 indicates

that using the incremental update in 4DIAU introduces almost

no additional shock to the model as compared to NoDA. The

eyewall evolution in Fig. 7b also indicates less dynamical im-

balance as the spurious updrafts in the eye region are not found

in 4DIAU in contrast to 4DEV. The surface wind evolution of

4DIAU during the 6-h IAU time window is shown in Figs. 8a–

8g. The 4DIAU experiment gradually reduces its storm size,

increases its asymmetry, and reduces the location error as the

increments are incrementally added to the model integration.

However, an apparent issue is noticed in the 4DIAU forecasts.

The intensity of this updated storm is even weaker than the

FIG. 5. The (a),(d) Vmax; (b),(e)MSLP; and (c),(f) track predictions of the experiments 4DEV (purple), 4DIAU

(cyan), 4DAN (gold), 4DIAU-RL (brown), 4DAN-RL (red), and 4DIAU-FR (green) in comparison with the best

track (black) during Patricia. Note, to be comparable with 4DEV and the best track, all the forecasts are plotted

from 1800 UTC, even though the actual free forecast in the IAU and AN experiments started from 2100 UTC.
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background (e.g., Fig. 8d vs Fig. 4r). With this even weaker

Vmax during the update, the 4DIAU reaches a weaker peak

Vmax as compared to 4DEV around 1200 UTC 23 October

(Fig. 5a). Although the MSLP seems to be enhanced by the

4DIAU during the incremental updates, it strengthens more

slowly afterward in consistency with the Vmax evolution

(Fig. 5b). The eastward bias is only slightly reduced in the track

forecast as shown in Fig. 5c.

In general, the stormevolution in 4DIAU is not improved upon

4DEV although the model shock is reduced. Consistent with

section 2b, it is hypothesized that using predetermined increments

in 4DIAU can bring disruptive effect while the storm went

through rapidly changing nonlinear evolution. The predetermined

increments used for 4DIAU at each analysis time are shown in

Figs. 8h–8n. Specifically, these increments are subtracted from the

4DEnVar analyses in Figs. 4h–4n using the NoDA forecasts in

Figs. 4o–4u. Given both large location and size corrections, the

decrease of wind speed dominates the predetermined increments

most of the time, except around the wind maxima of the analysis

and the eye regions of the background. These predetermined in-

crements tend to build a cyclonic circulation near the analyzed

storm and an anticyclonic circulation near the background storm.

As shown in section 2b, when themodified storm shifts away from

the background forecast due to nonlinear evolution, these

predetermined increments can be added towrong locations and

therefore cause issues in IAU analysis and prediction. To better

visualize such an impact, the predetermined increments

(Figs. 8h–n) are directly added to the corresponding 4DIAU

forecasts (Figs. 8a–g) to produce combined ‘‘analyses’’ in

Figs. 8o–8u. Initially at 1500 UTC when there is no incre-

ment added to the model yet, the combined analysis is ex-

actly the same as the 4DEnVar analysis. And there are not

many differences between these two analyses for the first

several hours when the IAU influenced storm barely di-

verges from the NoDA forecast (Figs. 8p–q). As the up-

dated forecast from 4DIAU gradually deviates away from

NoDA at the later hours (Figs. 8r–u), the structures of the

combined analyses significantly differ from the 4DEnVar

analyses because the predetermined increments calculated

from NoDA are now inconsistently added to the 4DIAU

influenced forecast. Specifically, instead of modifying the

storm size and location, the predetermined increments now

tend to create a strong and localized jet (Figs. 8t–u), which is

destructive to the storm structure. As a result, the model

struggles to maintain a reasonable storm structure during

the IAU period. As evidenced in Fig. 7b, the eyewall region

becomes too wide and has multiple maxima between 1700

and 2000 UTC. Between 2100 and 2300 UTC, there is even

an eyewall replacement feature in the 4DIAU forecast,

which should not happen during the RI period of Patricia

but 24 h later in reality (Rogers et al. 2017).

In agreementwith the hypotheses and discussions in section 2b,

results in this subsection indicate that the major issue of

4DIAU is from the use of predetermined increments while

the hurricane goes through rapidly changing nonlinear evo-

lution. The 4DAN experiment is expected to suffer less on

this issue. Figure 9a–9g shows that 4DAN not only success-

fully reduces the storm size, increases the storm asymmetry,

and reduces the storm location error gradually as 4DIAU, but

also improves the intensity predictions upon 4DIAU, espe-

cially at the early lead times (Figs. 5a,b). However, as shown in

Figs. 9g and 5, the Vmax evolution of 4DAN is still too weak to

begin with, and its peak is about 9m s21 weaker than the best

track (Fig. 5a). Moreover, the MSLP evolution of 4DAN after

0000 UTC 23 October is also much weaker than the best track

(Fig. 5b). Figure 7c indicates that although the eyewall evolution

in 4DAN has better continuity than 4DIAU, its eyewall is still

wide and is not very well-organized as an RI storm. Figure 6

shows that 4DAN produces the least MASLP tendency among

all the experiments, which is even weaker than NoDA at almost

all times. Such a result is likely related to the overly strong fil-

tering effect of nudging on the background field as discussed in

sections 1 and 2b.

b. 4DIAU-RL and 4DAN-RL forecasts

In section 4a, although both 4DIAUand 4DANexperiments

show less shocks to the model as expected, they under forecast

the intensity compared to 4DEV As suggested in section 2c,

removing the initial location error should improve both

methods. Thus, experiments 4DIAU-RL and 4DAN-RL as

designed in section 3b are conducted.

The 4DIAU-RL forecast is shown in Figs. 10a–10g. To begin

with, the background valid at 1500 UTC is first relocated to the

best track (NoDA-RL). The extra relocation step in the back-

ground introduces additional shocks to the model as shown in

FIG. 6. Themean absolute sea level pressure (MASLP) tendency

evolution of the NoDA (black), Back (blue), 4DEV (purple),

4DIAU (cyan), 4DAN (gold), 4DIAU-RL (brown), 4DAN-RL

(red), and 4DIAU-FR (green) between 1500 UTC 22 Oct and

0000 UTC 23 Oct. The tendency is output every 2min.
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Fig. 6 (brown vs cyan). But this increase of MASLP tendency is

apparently smaller than the increase due to the intermittent DA

in 4DEV (purple vs blue). With a much smaller location error at

the initial time2 (Fig. 10a vs Fig. 8a), the location errors within

the 6-h time-window are smaller and are reflected as reduced

dipole features and smaller magnitude of the predetermined

increments (Figs. 10h–n). The smaller predetermined incre-

ments lead to smaller discrepancy of 4DIAU-RL between the

updated and background forecasts. Consequently, the combined

analyses from 4DIAU-RL (Figs. 10o–u) suggest a more reason-

able stormevolution as compared to that in 4DIAU.For example,

the jet like feature of the combined analysis for 4DIAU-RL is

much less significant than that in 4DIAU (Fig. 10u vs Fig. 8u).

Therefore 4DIAU-RL eventually produces a stronger forecast

(Figs. 5d–e) with more size corrections as compared to 4DIAU

(Fig. 10g vs Fig. 8g). The vertical velocity evolution in 4DIAU-RL

also shows a more reasonable and consistent eyewall contraction

evolutionduring and after the IAUperiod than 4DIAU(Fig. 7c vs

Fig. 7b). Such an improvement of 4DIAU-RL over 4DIAU is in

agreement with our results in section 2b. However, as indicated in

section 2b, since there is still amoving speed discrepancy between

the updated and background forecast, the less initial location

error in 4DIAU-RL can only alleviate the nonlinear issues to

certain extent. Hence, although the intensification rate of Vmax

predictions is improved upon 4DIAU, 4DIAU-RL only im-

proves theVmax andMSLP predictions upon 4DEV for the first

several hours. The intensification rate in 4DIAU-RL is still too

weak as compared to the best track and the peak intensity

around 1200 UTC 23 October is only slightly better than 4DEV

(Figs. 5d,e). Furthermore, despite the smaller initial track error,

the track prediction in 4DIAU-RL is overall comparable with

4DIAU (Fig. 5c vs Fig. 5e).

Similar to 4DIAU-RL, 4DAN-RL is also initialized from

NoDA-RL with less initial location error as compared to

4DAN. Figures 9h–9n show that this 4DAN-RL clearly

FIG. 7. The time–radius Hovmöller diagram of the azimuthal mean vertical velocity at 500 hPa (shaded) and the azimuthal mean

tangential wind at 900 hPa (gray contour) for (a) 4DEV, (b) 4DIAU, (c) 4DAN, (d) 4DIAU-RL, (e) 4DAN-RL, and (f) 4DIAU-FR

between 1500 UTC 22 Oct and 0000 UTC 23 Oct. The corresponding radius of maximum wind evolution from the postseason b-deck best

track is shown in black.

2 The relocation is not able to fully remove the location error

because the accuracy of the relocation package is on the order

of 0.18.
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produces stronger Vmax evolution than 4DAN in addition to

the size correction during the updates. Additionally, the Vmax

andMSLPpredictions in Figs. 5d and 5e show that 4DAN-RLnot

only improves the intensity prediction over 4DAN, but also im-

proves the intensity prediction over the corresponding 4DIAU-

RL as well as 4DEV at almost all lead times. The vertical velocity

evolution in Fig. 7e shows that 4DAN-RLproduces a consistently

intensifying and contracting eyewall, which agrees with the in-

tensifying Patricia better than 4DAN. Also, 4DAN-RL again

produces a smoother and more continuous eyewall evolution

than 4DIAU-RL, especially near the end of the IAU period at

2100UTC 22October. It is noticed that the eyewall of 4DAN-RL

between 2100 UTC 22 October and 0000 UTC 23 October is

slightly stronger than that in 4DIAU-RL (Fig. 7e vs Fig. 7d).

These results are consistent with the stronger intensity pre-

dictions from 4DAN-RL in Fig. 5. The MASLP tendency

evolution in Fig. 6 suggests that nudging is again producing

slightly less shocks to the model as compared to the corre-

sponding 4DIAU-RL. The track forecast from 4DAN-RL is

not significantly better than either 4DAN or 4DIAU-RL.

c. 4DIAU-FR forecasts

To further improve the application of 4DIAU in the rap-

idly evolving hurricane predictions, a 4DIAU-FR approach is

FIG. 8. As in Fig. 4, but for (a)–(g) 4DIAU forecasts, (h)–(n) the predetermined increments, and (o)–(u) the combined analyses.

FIG. 9. As in Fig. 4, but for (a)–(g) 4DAN forecasts and (h)–(n) 4DAN-RL forecasts.
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proposed in section 2d. This approach calculates feature (storm

in this case) relative increment and is not concerned by the

moving speed discrepancy between the updated and background

forecasts. The 4DIAU-FR forecast is shown in Figs. 11a–11g.

The analyzed TC from 4DIAU-FR is significantly stronger than

either 4DIAUor 4DIAU-RLwhile the storm size is consistently

reduced during the incremental updates (Figs. 11a–g). Note that

the final 4DIAU-FR analysis on 2100 UTC 22 October in

Fig. 11g is relocated to the observed position before initializing

the prediction (Fig. 11h). Such a relocation can introduce

FIG. 10. As in Fig. 8, but for 4DIAU-RL.

FIG. 11. (a)–(v)As in Fig. 8, but for 4DIAU-FR. The 4DIAU-FR forecast at the final IAU times at 2100UTC 22Oct 2015 will be relocated

to the best track and is shown in (h).
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additional shocks to the model, but the shocks are not as sig-

nificant as those from the downscaling at 1500 UTC (Fig. 6,

green vs cyan). Despite the shock to the model at the end of the

incremental update, the eyewall evolution in Fig. 7f suggests that

4DIAU-FR is hardly degraded by the shocks. In fact, the updraft

in 4DIAU-FR is consistently stronger than any other experi-

ments beginning from the end of the IAU period at 2100 UTC,

consistent with the stronger intensity predictions from Figs. 5d–

5f. The predicted MSLP and Vmax values from 4DIAU-FR

match the best track the most among all experiments during

the intensification period, except that the peak values are too

strong, especially the MSLP. The overly low MSLP is likely

due to a systematic bias from the HWRF Model as we found

in Lu and Wang (2021), which the HWRF tends to over

predict MSLP when Vmax matches the best track for strong

storms. The track prediction from 4DIAU-FR also matches

the best track better than any other experiments. These sig-

nificant improvements upon all the other experiments in

4DIAU-FR are consistent with our conclusions from the

idealized experiments in section 2d.

The improvements of 4DIAU-FR over both 4DIAU and

4DIAU-RL again suggest that the moving speed discrepancy

during the nonlinear evolution is one major problem of the

predetermined increments used by the 4DIAU methods for

hurricane predictions. The predetermined feature-relative

increments in 4DIAU-FR show reduction of wind speed

primarily outside the radius of maximum wind (RMW) and

increase of wind speed inside, which corresponds to primarily

the size reduction of the storm (Figs. 11i–o). The combined

analyses in Figs. 11p–11v show reasonable storms with re-

duced sizes at all lead times. Unlike 4DIAU, the RI of the

4DIAU-FR storm during the size contraction is not inter-

rupted by the false corrections due to the moving speed

discrepancy. These results suggest that the 4DIAU-FR

method is potentially an efficient approach to improve the

application of 4DIAU for the rapidly evolving hurricane

predictions.

5. Summary and discussion

This study explores the limitation and potential improve-

ments of the 4DIAU methods for the short-term intensity

prediction of hurricanes using a GSI-based 4DEnVar DA

system for HWRF.

The degradation of the traditional 4DIAU in highly nonlinear

evolutions is first identified and investigated using a simple os-

cillation model. Using the online increments with a 4DAN

method is found to reduce the degradation but increases am-

plitude errors. Further investigations show that reducing initial

phase error can help reduce the degradation in 4DIAUaswell as

in 4DAN. To fully address the degradation issue in the 4DIAU

method, one feature-relativemethod is proposed and is found to

significantly improve the forecasts under nonlinear evolutions as

compared to the other experiments.

The 4DIAU, 4DAN, and the proposed improvements are

then implemented into the GSI-based 4DEnVar DA system

for HWRF. Experiments are conducted with real case storm

Patricia (2015) based on an early study by Lu andWang (2019).

The overall results in the intensity predictions of Patricia are in

line with the findings from the simple oscillation model.

Specifically, 4DEV improves the storm structure by reducing

the storm size and increasing the storm asymmetry but is suf-

fering from slow spinup due to dramatic dynamical adjust-

ments in themodel after initialization. The 4DIAUexperiment

gradually modifies the storm structure by reducing its size with

less shock to the model, improves the early lead-time intensity

predictions by increasing the intensification rate, and slightly

improves the track predictions. However, the storm produced

by 4DIAU is too weak. The 4DAN experiment can improve

the intensity prediction upon 4DIAU, but its peak intensity

is still weaker than both the best track and 4DEV. Both

4DIAU-RL and 4DAN-RL improve the intensity prediction

upon the corresponding 4DIAU and 4DAN by relocating

the initial background before the incremental update. The

4DAN-RL experiment can further improve the intensity

prediction upon 4DIAU-RL. The feature-relative experi-

ment 4DIAU-FR shows the most improvement among all

experiments during the incremental update and also pro-

duces the best intensity and track prediction.

In general, results from both the simple model and HWRF

Model demonstrate the hypothesis that the predetermined

increments used in the traditional 4DIAU are not directly

applicable for the highly nonlinear systems like the rapidly

intensifying hurricanes. The implicit linear violation is pri-

marily due to the moving speed discrepancy between the

updated and background forecasts during the incremental

update in a nonlinear evolution. The predetermined incre-

ments in 4DIAU can be added to wrong places and damage the

updating storm when such a discrepancy exists. The online or

adaptive increments in 4DANdo not require the implicit linear

assumption and therefore improves the performance of the

incremental updates as well as the intensity prediction upon

4DIAU. But the improvements from 4DAN can be limited by

its overfiltering effect.

In both 4DAN-RL and 4DIAU-RL methods, relocating the

initial background during the update improves the corre-

sponding traditional methods. Such an improvement is likely

due to that the relocation not only reduces the overall location

error during the updates, but also decreases the magnitude of

the total increments to be addressed. Yet both the 4DIAU-RL

and 4DAN-RL could double the computing cost of the incre-

mental approach for real time use because they both require a

background rerun after relocation (the initial background

forecast is still needed for the 4DEnVar DA), and before the

incremental update.

On the other hand, 4DIAU-FR does not require an addi-

tional background rerun in a continuously cycled DA system

and it bypasses the moving speed discrepancy issue through a

feature-relative framework. This approach is shown to produce

the best intensity and track predictions among all experiments.

However, the impact of this 4DIAU-FR is highly relied on the

relocation of analyses. Our sensitivity experiments indicate

that the analysis relocation tends to decrease the strength of

the analysis due to the smoothing during relocation, especially

when the storm is weak (not shown). Such a loss of strength in

the relocated analyses can result in a loss of increments and
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eventually makes the 4DIAU-FR forecast weaker than it

should be (not shown).

As an initial study with limited computational resources,

the methods proposed are demonstrated with a simple

model and a single hurricane case. A larger sample size

with a continuously cycled experiment configurations to

establish a more robust conclusion about which method is

the most efficient way for improving the intensity predic-

tions of hurricanes are left for future work. Additional ap-

plications of this newly proposed 4DIAU-FR approach to

other featured severe weather events as well as the potential

impact of 4DIAU-FR on the storm asymmetric features are

also interesting topics for the future work.
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